Math 10B - Calculus of Several Variables II - Winter 2011
March 9, 2011
Practice Final

Name: \qquad

There is no need to use calculators on this exam. All electronic devices should be turned off and put away. The only things you are allowed to have are: a writing utensil(s) (pencil preferred), an eraser, and an exam. All answers should be given as exact, closed form numbers as opposed to decimal approximations (i.e. π as opposed to $3.14159265358979 \ldots$...). Cheating is strictly forbidden. You may leave when you are done. Good luck!

Problem	Score
1	$/ 10$
2	$/ 10$
3	$/ 20$
4	$/ 20$
5	$/ 20$
6	$/ 20$
7	$/ 20$
9	$/ 20$
10	
11	
Score	

Problem 1 (10 points). Compute the following integral:

$$
\int_{0}^{\frac{\pi}{2}} \int_{y}^{\frac{\pi}{2}} \sin x^{2} d x d y
$$

Draw the region of integration.

First the region:

Since the integral cannot be integrated in its current form, we must switch the order of integration

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \int_{y}^{\frac{\pi}{2}} \sin x^{2} d x d y=\int_{0}^{\frac{\pi}{2}} \int_{0}^{x} \sin x^{2} d y d x=\int_{0}^{\frac{\pi}{2}} x \sin x^{2} d x \\
& \stackrel{u=x^{2}}{=} \frac{1}{2} \int_{0}^{\frac{\pi^{2}}{4}} \sin u d u=-\frac{1}{2}\left(\cos \frac{\pi^{2}}{4}-1\right)
\end{aligned}
$$

Problem 2 (10 points). Find the volume of the region bounded by $z=x^{2}+y^{2}-1$ and $z=1-x^{2}-y^{2}$.

Let R be the region above and recall that volume of R is given by

$$
V=\iiint_{R} d V
$$

Notice that this region is easily described in cylidrical coordinates as:

$$
0 \leq r \leq 1,0 \leq \theta \leq 2 \pi, r^{2}-1 \leq z \leq 1-r^{2}
$$

and so the volume integral is

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}-1}^{1-r^{2}} r d z d r d \theta=\left.\int_{0}^{2 \pi} \int_{0}^{1}(r z)\right|_{r^{2}-1} ^{1-r^{2}} d r d \theta=\int_{0}^{2 \pi} \int_{0}^{1} 2\left(r-r^{3}\right) d r d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi} d \theta=\pi
\end{aligned}
$$

Problem 3 (20 points).
(a) (10 points) Compute the Jacobian $\frac{\partial(x, y)}{\partial(r, \theta)}$ for changing Cartesian coordinates to polar coordinates.
(b) (10 points) Let D be the region bounded by $x^{2}+y^{2}=5$ where $x \geq 0$. Compute the integral

$$
\iint_{D} e^{x^{2}+y^{2}} d A
$$

(a): Recall the transformation to polar coordinates is given by the map

$$
T(r, \theta)=(r \cos \theta, r \sin \theta) .
$$

The derivative matrix of this transformation is

$$
D T(r, \theta)=\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)
$$

and hence the Jacobian of the transformation is

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta=r .
$$

(b): The region of integration, D, looks like

which can be described by $0 \leq r \leq \sqrt{5}$ and $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$. Using a substitution to polar coordinates, we have:

$$
\begin{aligned}
\iint_{D} e^{x^{2}+y^{2}} d A & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\sqrt{5}} e^{r^{2}} r d r d \theta \stackrel{u=r^{2}}{=} \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{5} e^{u} d u d \theta \\
& =\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(e^{5}-e^{0}\right) d \theta=\frac{\left(e^{5}-1\right)}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d \theta \\
& =\frac{\pi\left(e^{5}-1\right)}{2}
\end{aligned}
$$

Problem 4 (20 points).
(a) (10 points) Parametrize the circle of radius r.
(b) (10 points) Use this parametrization to show that the circumference of the circle of radius r is $2 \pi r$. (Hint: Use arclength.)
(a): The parametrization of the circle of radius r is given by

$$
\gamma(t)=(r \cos t, r \sin t), 0 \leq t \leq 2 \pi
$$

(b): Recall that the arclength of a curve $C:[a, b] \longrightarrow \mathbb{R}^{2}$ is given by

$$
\text { Arc Length }=\int_{C} d \mathbf{s}=\int_{a}^{b}\left\|C^{\prime}(t)\right\| d t
$$

and so, using the parametrization above we can find the arclength (i.e. circumference) of the circle of radius r :

First $\gamma^{\prime}(t)=(-r \sin t, r \cos t)$ and $\left\|\gamma^{\prime}(t)\right\|=\sqrt{r^{2} \sin ^{2} t+r^{2} \cos ^{2} t}=r$, so

$$
\text { Arc Length }=\int_{0}^{2 \pi} r d t=2 \pi r
$$

Problem 5 (20 points). Let C be the boundary of the region bounded by $y=x^{2}$ and $x=y^{2}$, oriented counterclockwise.
(a) (10 points) Compute the integral

$$
\oint_{C} \arctan x^{3} d x+\ln \left(y^{2}+1\right) d y .
$$

(b) (10 points) Compute the integral

$$
\oint_{C} y d x-x d y .
$$

(a): Let R be the region bounded by C. Then, by Green's theorem this integral is

$$
\oint_{C} \arctan x^{3} d x+\ln \left(y^{2}+1\right) d y=\iint_{R}\left(\frac{\partial}{\partial x}\left[\ln \left(y^{2}+1\right)\right]-\frac{\partial}{\partial y}\left[\arctan x^{3}\right]\right) d A=\iint_{R}(0-0) d A=0
$$

(b): The region is

So by Green's theorem, the integral is

$$
\oint_{C} y d x-x d y=\iint_{R}(-1-1) d A=-2 \int_{0}^{1} \int_{\sqrt{y}}^{y^{2}} d x d y=-2 \int_{0}^{1}\left(y^{2}-\sqrt{y}\right) d y=\frac{2}{3}
$$

Problem 6 (20 points). Determine whether the following vector fields are conservative. Find a scalar potential function for the ones that are conservative.
(a) (10 points)

$$
\overrightarrow{\mathbf{F}}(x, y)=\left(2 x \sin y, x^{2} \cos y\right)
$$

(b) (10 points)

$$
\overrightarrow{\mathbf{G}}(x, y, z)=(y+z, 2 z, x+y)
$$

(a): Let $M=2 x \sin y$ and $N=x^{2} \cos y$. Since $\frac{\partial M}{\partial y}=2 x \cos y$ and $\frac{\partial N}{\partial y}=2 x \cos y, \overrightarrow{\mathbf{F}}$ is a conservative vector field, so $\overrightarrow{\mathbf{F}}=\nabla f$ for some scalar function f. Let's find f :

$$
f=\int M d x=\int 2 x \sin y d x=x^{2} \sin y+g(y)
$$

and now take a partial derivative with respect to y :

$$
\frac{\partial f}{\partial y}=x^{2} \cos y+g^{\prime}(y)=N=x^{2} \cos y
$$

so $g^{\prime}(y)=0$ and $g(y)=c$, thus

$$
f(x, y)=x^{2} \cos y+c
$$

(b): To check whether or not $\overrightarrow{\mathbf{G}}$ is conservative, we need to take its curl

$$
\operatorname{curl} \overrightarrow{\mathbf{G}}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y+z & 2 z & x+y
\end{array}\right|=(1-2,-(1-1), 0-1)=(-1,0,-1) \neq \mathbf{0}
$$

thus $\overrightarrow{\mathbf{G}}$ is not conservative.

Problem 7 (20 points). Let f be a \mathcal{C}^{1} function on some region $D \subset \mathbb{R}^{2}$, and consider the surface given by $z=f(x, y)$. Show that the surface area of this surface is given by

$$
S . A .=\iint_{D} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d A
$$

Hint: Recall that surface area is given by

$$
S . A .=\iint_{\mathbf{X}} d \mathbf{S}
$$

where \mathbf{X} is a parametrization of the surface.

First parametrize the surface by $X: D \longrightarrow \mathbb{R}^{3}$ by

$$
X(s, t)=(s, t, f(s, t)) .
$$

Then

$$
T_{s}=\left(1,0, f_{s}\right)
$$

and

$$
T_{t}=\left(0,1, f_{t}\right)
$$

so the normal vector field is

$$
N=T_{s} \times T_{t}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & f_{s} \\
0 & 1 & f_{t}
\end{array}\right|=\left(f_{s},-f_{t}, 1\right)
$$

so $\|N\|=\sqrt{f_{s}^{2}+f_{t}^{2}+1}$ and hence the surface area is

$$
S . A .=\iint_{X} d \mathbf{S}=\iint_{D}\|N\| d A=\iint_{D} \sqrt{f_{s}^{2}+f_{t}^{2}+1} d A
$$

Since s and t were dummy variables, let $s=x$ and $t=y$ to get

$$
S . A .=\iint_{D} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d A
$$

Problem 8 (10 points). Let S denote the closed cylinder with bottom given by $z=0$, top given by $z=7$, and lateral surface given by $x^{2}+y^{2}=49$. Orient S with outward normals. Compute the following integral:

$$
\iint_{S}(-y \hat{i}+x \hat{j}) \cdot d \mathbf{S} .
$$

Let C be the region bounded by the cylinder. Notice that this problem satisfies the hypothesis of Gauss' theorem, so since

$$
\operatorname{div}(-y \mathbf{i}+x \mathbf{j})=0+0=0
$$

by Gauss' theorem

$$
\iint_{S}(-y \hat{\imath}+x \hat{\jmath}) \cdot d \mathbf{S}=\iiint_{C} 0 d V=0 .
$$

Problem 9 (20 points). Let S be the sphere given by $x^{2}+y^{2}+z^{2}=1$ with outward pointing normals.
(a) Let $\mathbf{F}(x, y, z)=\left(2 x y z+5 z, e^{x} \cos y z, x^{2} y\right)$. Compute

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}
$$

(b) Let $\mathbf{G}(x, y, z)=(x, y, z)$. Compute

$$
\iint_{S} \mathbf{G} \cdot d \mathbf{S} .
$$

Hint: The volume of a sphere of radius r is given by $V=\frac{4}{3} \pi r^{3}$.
(a): Notice that is problem satisfies the hypothesis of Stokes' theorem. Also, recall that the boundary of a sphere is empty (i.e. the sphere does not have a boundary), so by Stokes' theorem

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s}=\mathbf{0} .
$$

(b): Let B be the ball bounded by the sphere above. Then B is the ball of radius 1 , so its volume is $\frac{4}{3} \pi$. This problem satisfies Gauss' theorem, so since $\operatorname{div} \mathbf{G}=1+1+1=3$, by Gauss' theorem

$$
\begin{aligned}
\iint_{S} \mathbf{G} \cdot d \mathbf{S} & =\iiint_{B} \operatorname{div} \mathbf{G} d V=3 \iiint_{B} d V \\
& =3(\text { volume of ball of radius } 1) \\
& =3\left(\frac{4}{3} \pi\right)=4 \pi
\end{aligned}
$$

Problem 10 (20 points). Verify that Stokes' theorem implies Green's theorem. Hint: Use the vector field $\mathbf{F}(x, y, z)=$ $(M(x, y), N(x, y), 0)$.

Recall the statements of Stokes' and Green's theorems
Theorem (Stokes' Theorem). Let S be a bounded, piecewise smooth, oriented surface in \mathbb{R}^{3}. Suppose that ∂S consists of finitely many piecewise \mathcal{C}^{1}, simple, closed curves each of which is oriented consistently with S. Let \mathbf{F} be a vector field of class \mathcal{C}^{1} whose domain includes S. Then

$$
\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s}
$$

Theorem (Green's Theorem). Let D be a closed, bounded region in \mathbb{R}^{2} whose boundary $C=\partial D$ consists of finitely many simple, closed curves. Orient the curves of C so that D is on the left as one traverses C. Let $\mathbf{F}(x, y)=$ $M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ be a vector field of class \mathcal{C}^{1} throughout D. Then

$$
\oint_{C} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

Let S be a bounded, piecewise smooth, oriented surface in \mathbb{R}^{3}. Let us further assume that S lies in the $x y$-plane. Let $C=\partial S$ and assume in addition to the above assumptions that C consists of finitely many simple, closed curves oriented so that S is on the left as you traverse C. Since $z=0$, let $\mathbf{F}(x, y, z)=(M(x, y), N(x, y), 0)$. Then

$$
\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\iint_{S}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

Now by Stokes' theorem

$$
\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\oint_{C} \mathbf{F} \cdot d \mathbf{s}=\oint_{C} M d x+N d y
$$

Thus putting the two equations together we have

$$
\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\oint_{C} M d x+N d y
$$

and we are done.

